Novel Imidazolium Benzimidazolate Inner Salts Containing Pentamethylene and Polyether Interannular Spacers. Synthesis and Structural Aspects

Ermitas ALCALDE,* Immaculada DINARÉS, Josep-María PONS, and Tomás ROCA Lab. Química Orgánica, Facultad de Farmacia, E-08028-Barcelona, Spain

For several analogues of heterocyclic betaines 2 and 3, the high dipolar character, due to terminal rings with extreme characteristics within heteroaromatic systems, and the nature of the linkers, had a dominant influence upon their physico-chemical properties in solution. Their structural features enhanced non-covalent interactions inducing coiled conformations.

Azinium(azolium) azolate inner salts with different interanular spacers 1 comprise a vast array of highly dipolar chemical entities, and their physical and chemical properties are a result of their dipolar nature. Among them, we have focused our attention on the imidazolium benzimidazolate betaines 2 with a pentamethylene linker, together with the novel podand-type¹) dipolar structures 3 related to synthetic ionophores,²) in order to ascertain the ability of the spacer to induce coiled conformations. For betaines from group 2, related systems such as N-ylides 4^{3a} and their higher homologues $5,^{3b}$ 6^{3c} have previously been studied.

Het
$$\stackrel{+}{\longrightarrow}$$
 SPACER $\stackrel{N}{\longrightarrow}$ X $\stackrel{N}{\longrightarrow}$ N $\stackrel{N}{\longrightarrow}$

In the present communication we report the first synthesis and relevant structural aspects of some simple examples of the betaines 7-11 and their immediate precursors 12-16, shown in Scheme 1. Compounds with a pentamethylene spacer 7-9 were prepared by a three-step procedure where their immediate precursors 12-14 were obtained following Hein's benzimidazole synthesis.⁴⁾ Alternatively, the podand-type compounds 10 and 11 were synthesized by a four-step procedure with compound 21⁵⁾ as the starting material.

The dipolar structural pattern that characterizes betaines 7-11 implies strong inter and intramolecular forces.⁷⁾ Another factor to be taken into account arises in connection with the nature of the ionic species detected in solution, since the negative part of dipoles 1 are basic azolate moieties, 8a) especially for non-conjugated π -electron systems, as is the case for betaines 7-11 (vide infra). Bearing this in mind, the spectroscopic

properties^{9a)} of the model compounds **7-11**, together with their precursors **12-16**, were shown to be crucial for structural proof and also for providing a deeper insight into the preferred conformations of the novel molecules **7-11** in solution.^{9b)}

Scheme 1. Reagents and conditions: (A) method A; *N*-alkylimidazole⁶⁾ in dry acetonitrile for **17**, **18** or as reagent and solvent for **15**, **16**, under an atmosphere of nitrogen; (B) method B; (1) 4,5-dimethyl or 4-nitro-1,2-phenylenediamine **19** or **20** in poly(phosphoric acid), at 160-170 °C for **12**, **13** or 130-140 °C for **14**; (2) icewater; (3) Na₂CO₃ (2N) to reach pH 8; (4) 50% HBF₄-H₂O to pH 6; (C) method C; anion-exchange resin IRA-401 (OH⁻ form);³⁾ (D) method D; (1) 4,5-dimethyl-1,2-phenylenediamine **19** in 5N HCl, at 135 °C, 35 h; (2) ice-water; (3) Na₂CO₃ (2N) to reach pH 8; (E) method E; thionyl chloride, reflux, 1.5 h. overall yield for **7-9** ca. 55% and for **10**, **11** ca. 65%.

Table 1 shows the most relevant 1 H and 13 C NMR chemical shifts for compounds 7-16; individual assignments were made using the appropriate NMR experiments. For proton spectra, all the signals were found upfield for betaines 7-11 with respect to their precursors 12-16. In both series 2 and 3, the most interesting aspect was the observed shielding effect for the methyl protons, or the butyl α -protons, to the nitrogen atom of the imidazolium moiety together with the δ H ring moieties, whereas this shielding effect upon the imidazolium ring have not been observed in betaines from group 5^{3} b) or $6.^{3}$ c) This indicates the presence of strong intermolecular interactions, which predominated in the less polar solvent (*vide infra*). Indeed, for betaines 7 and 10 in CD₃CN, the CH proton signals of the π -deficient ring were shifted further upfield, whereas those of the π -excessive ring were less affected (see $\Delta\delta$ CD₃CN in Table 1). ROESY experiments in CD₃CN provided additional experimental evidence for the close spatial proximity of the heteroaromatic subunits present in the title betaines.

The long-wavelength UV/vis absorption band for compound pairs 7 and 12, 9 and 14, and 10 and 15 were examined ^{10a)} and the results are listed in Table 2.¹¹⁾ The fact that neither pair 7 and 12 nor the podand-type pair 10 and 15 could be distinguished by their electronic absorption spectra is noteworthy. The

basicity of the benzimidazolate⁸⁾ nucleus tends to be solvated in order to gain stability. In contrast, the lower basicity of the 5-nitrobenzimidazolate⁸⁾ nucleus present in the inner salt 9, revealed its long-wavelength band, which was shifted from 383 nm in CHCl₃ to 409nm in DMSO (a positive solvatochromism of $\Delta\lambda_{max}$ 26 nm).^{10d)} It seems feasible to postulate that solvents of lower polarity may stabilize coiled conformations for betaines of type 2, e.g. betaine 9, similar to the *intimate ion pair* in the solvent *cage*.^{7a)}

Table 1. Selected	¹ H and ¹³ C NMR	data of compound	pair 7, 12 and 10-15
-------------------	--	------------------	----------------------

Comp	H-2'	H-4'	H-5'	H-4,7	R	CH2 ^{a)}	C-2'	C-2	C-4,7	C-5,6	R
7 b)	c	7.60 ^d	7.73 ^d	6.97	3.71	2.63	136.8	162.3	115.3	123.7	35.7
12 b)	9.07	7.67 ^d	7.74 ^d	7.20	3.81	2.75	136.7	153.9	114.6	130.1	35.9
$\Delta \delta e$)		-0.07	-0.01	-0.23	-0.10	-0.12	+0.1	+8.4	+0.7	-6.4	-0.2
7 f)	c	7.11	7.21	7.12	3.49	2.76					
12 ^f)	8.42	7.29	7.33	7.25	3.76	2.81					
∆ δe)		-0.18	-0.12	-0.13	-0.27	-0.05					
10 ^b)	9.16	7.57	7.68	7.05	3.71	4.48	137.3	158.3	116.1	124.8	35.6
15 ^b)	9.09	7.65	7.71	7.29	3.82	4.66	137.0	150.5	115.3	130.3	35.9
$\Delta \delta e$)	+0.07	-0.08	-0.03	-0.24	-0.11	-0.18	+0.3	+7.8	+0.8	-5.5	-0.3
10 ^f)	8.83g)	7.05	7.27	7.18	3.53	4.61					
15 ^{f)}	8.94	7.26	7.39	7.32	3.73	4.72					
$\Delta \delta^{ m e)}$	-0.11	-0.21	-0.12	-0.14	-0.20	-0.11					

a) Only δ for the α -protons of the spacer to the π -excessive nucleus are listed. b) In DMSO-d₆. c) Signal not observed due to H-D exchange. d) NOE ${}^{1}H$ { ${}^{1}H$ } on irradiation at δ R. e) $\Delta\delta$: observed chemical shift difference between compounds pairs 7, 10 and 12, 16. f) In CD₃CN. g) Broad band.

In summary, dipolar chemical substrates with low molecular weight like 2 and 3 may form reasonable stable host-guest complexes. Efforts are under way to expand this work in to related systems and it will be of interest to study their complexation ability.

Support of this work by *DGICYT* (Grant No. PB 92-0792) is gratefully acknowledged. J.M.P. thanks the Ministerio de Educación y Ciencia for F.P.I. fellowship.

References

- F.Vögtle and E.Weber, Angew. Chem., Int. Ed. Engl., 18, 753 (1979); B.Tümmler, G.Maass, F.Vögtle,
 H.Sieger, U.Heimann, and E.Weber, J. Am. Chem. Soc., 101, 2588 (1979); S.Patai and Z.Rappoport,
 "Crown Ethers and Analogs", ed by John Wiley & Sons, Chichester, pp.207-304.
- K.Yamaguchi, S.Negi, S.Kozakai, R.Nagano, H.Kuboniwa, A.Hirao, S.Nakahama, and N.Yamazaki, Bull. Chem. Soc. Jpn., 61, 2047 (1988); H.Kuboniwa, K.Yamaguchi, S.Nakahama, K.Hori, and Y.Ohashi, Chem. Lett., 1988, 923; R.Wakita, K.Fujiwara, Y.Nakatsuji, and M.Okahara, ibid., 1990, 1897.
- a) E.Alcalde, I.Dinarés, J.Frigola, C.Jaime, J.-P.Fayet, M.-C.Vertut, C.Miravitlles, and J.Rius, J. Org. Chem., 56, 4223 (1991);
 b) E.Alcalde, Ll.Pérez-García, C.Miravitlles, J.Rius, and E.Valentí, ibid., 57, 4829 (1992);
 c) E.Alcalde, Ll.Pérez-García, and M.Gisbert, Chem. Lett., 1992, 2357.

- 4) E.Alcalde, I.Dinarés, Ll.Pérez-García, and T.Roca, Synthesis, 1992, 395.
- 5) Y.Nakatsuji, N.Kawamura, and M.Okahara, Synthesis, 1981, 42.
- 6) Under neutral conditions (Menschutkin reaction conditions).3b)
- a) C.Reichardt, "Solvents and Solvent Effects in Organic Chemistry", 2nd ed, VCH Publishers, Weinheim (1988); b) I.Golberg, *Top. Curr. Chem.*, **149**, 1 (1988); c) E.Weber and M.Czugler, *ibid.*, **149**, 76 (1988); d) C.A.Hunter and J.K.M.Sanders, *J. Am. Chem. Soc.*, **112**, 5525 (1990).
- 8) a) J.Catalán, J.L.M.Aboud, and J.Elguero, *Adv. Heterocycl. Chem.*, **41**, 187 (1987); b) The role of preferential interactions between water molecules and betaines **1** should also be taken into account for reliable interpretation of physico-chemical data measured in solution.³⁾
- 9) (a) Compounds 7-16 gave satisfactory elemental analysis. The IR spectra of compound 12-16 showed absorptions in the ranges of 3500-3400 cm⁻¹ (√NH) and 1100-1000 cm⁻¹ (√BF4⁻) for 12-14, and 2800-2500 cm⁻¹ (hydrochlorides) for 15, 16, while these bands were absent for betaines 7-11; b) Unfortunately, it was not possible to obtain suitable single crystals of compounds 7-9 for an X-ray structure aalysis, 10-16 being oils.
- a) The UV/vis spectra were obtained, using a similar protocol previously described for betaines of pyridinium N-phenolate^{10b}) and pyridinium N-benzimidazolate.^{10c}) The solute and the solvent were suitably dried; b) M.S.Paley and J.M.Harris, J. Org. Chem., 56, 568 (1991); c) E.Sturm, U.Krüger, J.Senn-Bilfinger, V.Figala, K.Klemm, T.J.Blake, D.W.Darkin, R.J.Ife, C.A.Leach, R.C.Mitchell, and G.Huttner, ibid., 52, 4573 (1987); d) In its precursor 14, this band appeared at 312 nm in CHCl₃ and 326 nm in DMSO; Δλ_{max} (9-14) ranged from 71 to 83 nm.
- 11) Table 2. The long-wavelength UV/vis absortion band of compound pairs 7, 12 and 9, 14a)

$$Me - N \xrightarrow{\downarrow} N - (CH_2)_5 \xrightarrow{N} Me$$

$$Me - N \xrightarrow{\downarrow} N - (CH_2)_5 \xrightarrow{N} NO_2$$

$$A^{-} (R: -; R: -)$$

$$12 (A^{-}: BF_4; R: H)$$

$$Me - N \xrightarrow{\downarrow} N - (CH_2)_5 \xrightarrow{N} NO_2$$

$$A^{-} (R: -; R: -)$$

$$14 (A^{-}: BF_4; R: H)$$

Solventb)	7	12	9	14	Δλ (9-14)
CHC13	290 (3,822)	290 (3,431)	383 (3,634)	312 (3,963)	71
1,4-dioxane	291 (2,799)	290 (3,475)	392 (3,759)	313 (3,347)	79
CH ₃ CN	290 (3,550)	290 (3,469)	396 (4,001)	318 (2,874)	78
DMSO	291 (3,741)	291 (3,660)	409 (4,037)	326 (3,602)	83
H ₂ O	_	287 (3,948)	319 (3,904)	316 (3,792)	3
aqueous buffer solution (pH= 9)		288 (3,906)	319 (3,793)	319 (3,847)	0

a) λ_{max} in nm, log ϵ_{max} in parenthesis. b) The solute and solvent were conveniently dry, using a similar protocol previously described (Ref.10), to reduce the presence of water as far as possible.

(Received July 12, 1994)